6.3

The vector product

Introduction

On this leaflet we describe how to find the vector product of two vectors.

1. Definition of the vector product

The result of finding the vector product of two vectors, \mathbf{a} and \mathbf{b}, is a vector of modulus $|\mathbf{a}||\mathbf{b}| \sin \theta$ in the direction of $\hat{\mathbf{e}}$, where $\hat{\mathbf{e}}$ is a unit vector perpendicular to the plane containing \mathbf{a} and \mathbf{b} in a sense defined by the right-handed screw rule as shown below. The symbol used for the vector product is the times sign, \times. Do not use a dot, \cdot, because this is the symbol used for a scalar product.

vector product: $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{e}}$

2. A formula for finding the vector product

A formula exists for finding the vector product of two vectors given in cartesian form:

$$
\begin{aligned}
& \text { If } \mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \text { and } \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \quad \text { then } \\
& \mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Example

Evaluate the vector product $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{b}=7 \mathbf{i}+4 \mathbf{j}-8 \mathbf{k}$.

Solution

By inspection $a_{1}=3, a_{2}=-2, a_{3}=5, b_{1}=7, b_{2}=4, b_{3}=-8$, and so

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =((-2)(-8)-(5)(4)) \mathbf{i}-((3)(-8)-(5)(7)) \mathbf{j}+((3)(4)-(-2)(7)) \mathbf{k} \\
& =-4 \mathbf{i}+59 \mathbf{j}+26 \mathbf{k}
\end{aligned}
$$

3. Using determinants to evaluate a vector product

Evaluation of a vector product using the previous formula is very cumbersome. There is a more convenient and easily remembered method for those of you who are familiar with determinants. The vector product of two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ can be found by evaluating the determinant:

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

To find the \mathbf{i} component of the vector product, imagine crossing out the row and column containing \mathbf{i} and finding the determinant of what is left, that is

$$
\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=a_{2} b_{3}-a_{3} b_{2}
$$

The resulting number is the \mathbf{i} component of the vector product. The \mathbf{j} component is found by crossing out the row and column containing \mathbf{j} and evaluating

$$
\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=a_{1} b_{3}-a_{3} b_{1}
$$

and then changing the sign of the result. Finally the \mathbf{k} component is found by crossing out the row and column containing \mathbf{k} and evaluating

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ then

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
$$

Example

Find the vector product of $\mathbf{a}=3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=9 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}$.

Solution

The two given vectors are represented in the determinant

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -4 & 2 \\
9 & -6 & 2
\end{array}\right|
$$

Evaluating this determinant we obtain

$$
\mathbf{a} \times \mathbf{b}=(-8-(-12)) \mathbf{i}-(6-18) \mathbf{j}+(-18-(-36)) \mathbf{k}=4 \mathbf{i}+12 \mathbf{j}+18 \mathbf{k}
$$

Exercises

1. If $\mathbf{a}=8 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and $\mathbf{b}=5 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ show that $\mathbf{a} \times \mathbf{b}=-5 \mathbf{i}-18 \mathbf{j}-29 \mathbf{k}$. Show also that $\mathbf{b} \times \mathbf{a}$ is not equal to $\mathbf{a} \times \mathbf{b}$, but rather that $\mathbf{b} \times \mathbf{a}=5 \mathbf{i}+18 \mathbf{j}+29 \mathbf{k}$.
